Neoclassical toroidal plasma viscosity in bounce-transit and drift resonance regimes in tokamaks

نویسندگان

چکیده

Abstract Neoclassical toroidal plasma viscosity in the bounce-transit and drift resonance regimes is calculated using a version of kinetic equation that encompasses physics nonlinear trapping quasilinear plateau tokamaks. It demonstrated mirror-force like term controls transition between these two regimes. When effective collision frequency larger than mirroring or bounce frequency, regime prevails; otherwise, reigns. The demonstration accomplished by Eulerian approach beyond grasp method integration along unperturbed orbit solving equation. neoclassical calculated. Approximate analytic expressions for include asymptotic limits are presented to facilitate thermal energetic alpha particle transport modeling

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neoclassical toroidal plasma viscosity torque in collisionless regimes in tokamaks.

Bumpiness in a magnetic field enhances the magnitude of the plasma viscosity and increases the rate of the plasma flow damping. A general solution of the neoclassical toroidal plasma viscosity (NTV) torque induced by nonaxisymmetric magnetic perturbation (NAMP) in the collisionless regimes in tokamaks is obtained in this Letter. The plasma angular momentum can be strongly changed, when there is...

متن کامل

Theory for Neoclassical Toroidal Plasma Viscosity in Tokamaks

Abstract. Error fields and resistive magnetohydrodynamic (MHD) modes are ubiquitous in real tokamaks. They break the toroidal symmetry in |B| in tokamaks. Here, B is the magnetic field. The broken toroidal symmetry leads to enhanced neoclassical toroidal plasma viscosity and consequently the rate of the toroidal flow damping. The neoclassical toroidal plasma viscosity also results in a steady s...

متن کامل

Neoclassical toroidal viscosity and error-field penetration in tokamaks

A model for field error penetration is developed that includes non-resonant as well as the usual resonant field error effects. The non-resonant components cause a neoclassical toroidal viscous torque that tries to keep the plasma rotating at a rate comparable to the ion diamagnetic frequency. The new theory is used to examine resonant error-field penetration threshold scaling in ohmic tokamak p...

متن کامل

Intrinsic Plasma Rotation Determined by Neoclassical Toroidal Plasma Viscosity in Tokamaks

Intrinsic steady state plasma rotation is important for plasma confinement in ITER, since the momentum input is expected to be small. It is well known that the intrinsicplasma rotation in stellarator is determined by non-ambipolar diffusion due to helical ripple [1]. The non-ambipolar diffusion due to small 3D magnetic perturbation described by theNeoclassical Toroidal plasma Viscosity ...

متن کامل

Neoclassical Drift of Circulating Orbits Due to Toroidal Electric Field in Tokamaks

In tokamaks, Ware pinch is a well known neoclassical effect for trapped particles in response to a toroidal electric field. It is generally believed that there exists no similar neoclassical effect for circulating particles without collisions. However, this belief is erroneous, and misses an important effect. We show both analytically and numerically that under the influence of a toroidal elect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nuclear Fusion

سال: 2023

ISSN: ['0029-5515', '1741-4326']

DOI: https://doi.org/10.1088/1741-4326/aca684